Accuracy and sensitivity of four‐dimensional dose calculation to systematic motion variability in stereotatic body radiotherapy (SBRT) for lung cancer

نویسندگان

  • Mark K.H. Chan
  • Dora L.W. Kwong
  • Sherry C.Y. Ng
  • Anthony S.M. Tong
  • Eric K.W. Tam
چکیده

The dynamic movement of radiation beam in real-time tumor tracking may cause overdosing to critical organs surrounding the target. The primary objective of this study was to verify the accuracy of the 4D planning module incorporated in CyberKnife treatment planning system. The secondary objective was to evaluate the error that may occur in the case of a systematic change of motion pattern. Measurements were made using a rigid thorax phantom. Target motion was simulated with two waveforms (sin and cos4) of different amplitude and frequency. Inversely optimized dose distributions were calculated in the CyberKnife treatment planning system using the 4D Monte Carlo dose calculation algorithm. Each plan was delivered to the phantom assuming (1) reproducible target motion,and (2) systematic change of target motion pattern. The accuracy of 4D dose calculation algorithm was assessed using GAFCHROMIC EBT2 films based on 5%/3 mm γ criteria. Treatment plans were considered acceptable if the percentage of pixels passing the 5%/3 mm γ criteria was greater than 90%. The mean percentages of pixels passing were 95% for the target and 91% for the static off-target structure, respectively, with reproducible target motion. When systematic changes of the motion pattern were introduced during treatment delivery, the mean percentages of pixels passing decreased significantly in the off-target films (48%; p < 0.05), but did not change significantly in the target films (92%; p = 0.324) compared to results of reproducible target motion. These results suggest that the accuracy of 4D dose calculation, particularly in off-target stationary structure, is strongly tied to the reproducibility of target motion and that the solutions of 4D planning do not reflect the clinical nature of nonreproducible target motion generally.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereotactic Body Radiotherapy for Lung Lesions using Multiple Phase 3D-CT Based on the Analysis of Radiobiological Parameters

Introduction: Planning target volume (PTV) is generated from internal treatment volume (ITV) using four-dimensional computed tomography (4D-CT) for enhanced therapeutic gain in the stereotactic body radiotherapy for lung lesions (SBRT-Lung). This study aimed to propose a strategy to generate ITV on multiple-phase 3D-CT and enhance therapeutic gain in SBRT-Lung. <stron...

متن کامل

The colossal circumvention of the lung lesion during lung stereotaxy

This is a case report on stereotaxic (Stereotactic Body Radiotherapy-SBRT) for lung cancer located in the left lower lobe (Segment 6, S6). There have been no reports on marked displacement of the peripheral lung cancer during radiotherapy. A pulmonary nodule was discovered on computed tomography (CT) conducted for a persistent cough in an 87-year-old male. According to diagnostic imaging, this ...

متن کامل

The evaluation of lung doses for radiation pneumonia risk in stereotactic body radiotherapy: A comparison of intensity modulated radiotherapy, intensity modulated arc therapy, cyberknife and helical tomotherapy

Background: Radiation Pneumonia (RP) is one of the most extensive side effects in Stereotactic Body Radiotherapy (SBRT) of lung cancer. SBRT are performed by means of Intensity Modulated Radiotherapy (IMRT), Intensity Modulated Arc Therapy (IMAT), CyberKnife (CK) or Helical Tomotherapy (HT) treatment methods. In this study, we performed a plan study to determine the plan parameter such as the M...

متن کامل

A quantitative investigation on lung tumor site on its motion tracking in radiotherapy with external surrogates

Introduction: In external beam radiotherapy each effort is done to deliver 3D dose distribution onto the tumor volume uniformly, while minimizing the dose to healthy organs at the same time. Radiation treatment of tumors located at thorax region such as lung and liver has a challenging issue during target localization since these tumors move mainly due to respiration. There are...

متن کامل

Evaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation

Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012